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London's idea that superconductivity might occur in organic macromolecules is examined in the light 
of the BCS theory of superconductivity. It is shown that the criterion for the occurrance of such a state 
can be met in certain organic polymers. A particular example is considered in detail. From a realistic estima­
tion of the matrix elements and density of states in this polymer it is concluded that superconductivity should 
occur even at temperatures well above room temperature. The physical reason for this remarkable high 
transition temperature is discussed. I t is shown further that the superconducting state of these polymers 
should be distinguished by certain unique chemical properties which could have considerable biological 
significance. 

I. INTRODUCTION 

IN the forward to Vol. 1 of his monographs on 
superfluids, F. London1 questions whether a 

supernuid-like state might occur in certain macro-
molecules which play an important role in biochemical 
reactions. If this should be the case, an entirely new and 
important consideration would be added to the problem 
of understanding living systems. In view of the signifi­
cance of such an effect, it appears appropriate at this 
time, when a theory of superconductivity, the Bardeen-
Cooper-Schrieffer (BCS) theory2 has been so remark­
ably successful in explaining much of the behavior of 
superconductors, to examine in the light of this whether 
or not a superconducting state might occur in certain 
macromolecules. In view of the extreme complexity of 
biological systems, it would be folly for a physicist to 

* Supported in part by the National Science Foundation and 
the U. S. Navy Office of Naval Research. 

1 F. London, Superfluids (John Wiley & Sons, Inc., New York, 
1950), Vol. 1. 

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys, Rev. 108, 
3175(1957). 

attempt to experiment in such an environment. Instead 
of attempting this, we shall tackle the problem on our 
own grounds. The BCS theory, while by no means 
complete and exact, has succeeded in providing a model 
with most of the essential features of a superconductor. 
In particular, it prescribes certain criteria for a system 
which, if satisfied, should lead to the superconducting 
state. Our approach is to consider how these criteria 
might be applied to the design of a particular organic 
molecule which, if its synthesis is possible, should show 
some of the essential features of a superconductor and, 
as we shall show, some remarkable chemical properties 
as well. One of the interesting features about the 
particular class of molecules we investigate in detail is 
that the molecules should be superconducting at room 
temperature and, indeed, to temperatures well above 
room temperatures. We can show on simple physical 
grounds why this is so and perhaps, with hindsight, why 
this was to be expected. 

The idea of superconductivity in organic systems is 
not a new idea, however, there is a considerable amount 
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of confusion as to the exact meaning of this. The 
diamagnetic ring currents of aromatic molecules such 
as benzene, naphthalene, etc., are nondissipative cur­
rents similar in many respects to the persistent currents 
of superconducting rings and, have often been referred 
to as a form of superconductivity. However, the " super­
conductivity" of these molecules is not the same as the 
superconductivity of bulk materials. The reason, I 
believe, is the following. In macroscopically large 
superconductors, if superconductivity exists, then a 
finite fraction of the charge carriers, in general, the BCS 
pairs are in identically the same center-of-mass momen­
tum state. This state then has a macroscopic occupation. 
In a magnetic field the canonical momentum of this 
state remains unchanged, but due to the vector potential 
term contained in it a current is induced and the energy 
of the state changes. For a macroscopically large super­
conductor the kinetic energy of the different center-of-
mass momentum states of the pairs lie extremely close 
to one another, however, because the coherence energy 
of each state depends upon the square of the number of 
pairs in that state, the state which is macroscopically 
occupied is appreciably lower in energy than any of the 
neighboring states even in a moderate magnetic field. 
I t is only by transitions in which practically all the 
pairs in the macroscopically occupied state simul­
taneously move to another state that a lower energy 
final state can be reached. This is obviously highly 
forbidden and, consequently, the system of pairs 
remains in the momentum state into which condensa­
tion originally occurred. Thus, it is the coherence energy 
which prevents the system from freely adjusting itself 
to take the lowest possible energy. In the aromatic 
ring compounds practically all the molecules are in 
their ground states. In a magnetic field the canonical 
momentum of the electrons in this state remain un­
changed and diamagnetic currents flow in the molecule 
similar to those of a bulk superconductor. The energy 
of the different momentum states of the electrons in 
each molecule in this case are well separated though, 
because the molecules are of microscopic size. Thus, the 
momenta of the electrons do not change because for 
fields as large as those available in the laboratory, the 
state which evolves out of the original ground state still 
is lower in energy than any other in the presence of the 
field. If, however, the aromatic system is made arbi­
trarily large such as in graphite, bulk superconductivity 
does not result because as the system gets bigger, the 
different momentum states of the electrons approach 
each other in energy. Transitions can then occur be­
tween states and the induced currents are dissipated. 
So that in order to get superconductivity in a macro-
molecule or in a bulk material, something of the nature 
of a coherence energy is required. In conventional 
superconductors this is provided by the phonon-
induced, electron-electron interaction; in attempting to 
devise a macromolecule which is to be superconducting 

one must provide, therefore, some mechanism similar 
to this. In our model we do this in the following manner. 

II. MODEL SYSTEM 

We shall consider a molecule consisting of two parts, 
a long chain called the "spine" in which electrons fill 
the various states and may or may not form a con­
ducting system; and secondly, a series of arms or side 
chains attached to the spine as indicated in Fig. 1. We 
will show that by appropriate choice of the molecules 
which constitute the side chains, the virtual oscillation 
of charge in these side chains can provide an interaction 
between the electrons moving in the spine. This can be 
made a sufficiently attractive interaction so that the 
superconducting state results. We can show further that 
even if the spine by itself is initially an insulator due 
to the valence band being full and the conduction band 
empty, the addition of side chains can increase the 
electron-electron attraction to the point where it 
becomes energetically favorable to enter the super­
conducting state by mixing in states of the conduction 
band. The spine thus transforms from the insulating or 
semiconducting state directly to the superconducting 
metallic state upon the addition of the side chains. 

Consider a long chain molecule as shown in the left 
half of Fig. 1. We will assume this is a conjugated chain 
of double and single bonds resonating between the two 
at each link. This corresponds in the band theory of 
metals to a band which is half filled and ideally is a 
metallic conductor. (See, however, Sec. III.) At the 
points P% P\ • • •, a regular array of side chain mole­
cules B are attached. The individual side-chain 
molecules are chosen to have a low-lying excited state 
such that transitions from the ground state to the 
excited state correspond classically to an oscillation of 
charge from end to end of the molecule. 

The electrons moving in the spine may be described 

FIG. 1. Proposed 
model of a super­
conducting organic 
molecule. The mole­
cule A is a long un­
saturated polyene 
chain called the 
"spine." The mole­
cules B are side 
chains attached to 
the spine at points 
P, P', 
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in the tight-binding approximation3 by eigenfunctions 
of the form 

1 
**.«(') = ZeikRiUm(r~Ri), (2.1) 

where Um(r—Ri) is the wave function of an electron in 
a single atom located at Ri. G is the number of links in 
the chain and ek is the energy of this electron and we 
will assume cyclic boundary conditions. To avoid un­
necessary complication we shall ignore the electron 
spin throughout the discussion except where necessary. 

The wave function of the electrons in a single side-
chain molecule in an eigenstate n we designate by 
$n (fi/2, • • •) • £*ue t ° the interaction of one side chain 
upon its neighbors, the degeneracy of the levels of the 
group of side chains will be removed when the side 
chains are brought together as in Fig. 1. The band of 
levels of the system of side chains as a whole can be 
described then by a new wave function similar to (2.1) 
above. 

1 
Xq,n= lle^ntn-RfiH-Rr • •)• (2.2) 

Gl>2 j 

The Coulomb interaction between the electrons in the 
spine and those on the side chain will provide an inter­
action between the electrons in the spine and the 
side-chain modes. Let this Coulomb interaction be 
Vi=J^ijV(r—Ri',ri--Rj,r2--Rj,''-) which will give 
rise to a typical interaction matrix element 

/ / • 
<t>k'm*(r)Xq>m>*(ri,r2- • •) 

XViXQn(r1}r2' • -)<i>km(r)(Pr&ri (2.3) 

In the model we shall consider, screening reduces the 
range of the Coulomb interaction so that one can safely 
disregard the contribution to the interaction from any 
but the neighboring side chains. Secondly, in our model 
there is negligible overlap between side chains, and also 
overlap between sites on the spine is relatively small. 
These features together with the properties of (2.1) and 
(2.2) and the assumption of regular substitution along 
the spine allow us to approximate the interaction (2.3) 
to give the following 

Vk>m>tq>n',qn,km = - E COSQtl"a / • • • 
GV—i.0,+1 J 

X lum,*(r)4,n'*(ri-n"ar-) •J 
X Vipn(r1-n"a)Um(r)X<Prffir1 (2.4) 

where k' — k+Q, q; = q~-Q7 and a is the spacing between 
side chains. 

I t is convenient to write this as (1/G)V(Q) for the 
moment. Then the complete spine side-chain interaction 
can be described in the representation of second 
quantization as 

1 
Fside chain = — 22 V(Q) ( 12 Cq~Q,n'1[Cqin)ajc+Qtm^akm , 

G Q,n,n' q 

where the af and a are the creation and destruction 
operators for the electron in the spine, and cf and c the 
corresponding operators for the side-chain modes. The 
particle-hole operator Y,qCq-Q>n^cqn which occurs in 
(2.5) appears in a similar manner to the phonon creation 
operator brf in the phonon-electron interaction in a 
metal. The terms linear in this particle-hole operator 
which appear through the interaction (2.5) in the total 
Hamiltonian can be eliminated by the same type of 
transformation4 which eliminates the terms linear in 
the phonon creation operator b$ in the conventional 
theory. This leads to a side-chain induced electron-
electron interaction V2 between electrons in the spine of 
the form 

2V2(Q) hoiQ 

G (ek+Q—ek)
2-(htoQ)2 

H'(ik* (2.6) 

We have written h<a for the difference (En>~-En) be­
tween the energy of the states of the side-chain modes 
and have considered for simplicity only one excited 
state n'. This is identical in form to the usual phonon-
induced electron-electron coupling. We note that if 
| #co |» | (ek+Q— €A.)| then the term in brackets reduces 
to an attractive interaction, V~— 2( | V(Q)\2)SLV/Gha)} 

where (\V(Q)\2)av is the average of the square of the 
interaction V(Q). 

In addition to this attractive term, the screened 
Coulomb interaction gives a repulsive term. The sum 
of these two is the net electron-electron interaction. Let 
this sum be ( F ((?))»•; then the total Hamiltonian for 
the electrons in the spine is 

3C = X (tk—v)aiMk 
k 

+ i E {V(Q))wak+Q^ak,^ak>(ik, (2.7) 
k,k'tQ 

where (V(Q))&V is given above and/x is the Fermi energy. 
The BCS theory then shows that a superconducting 

state is possible if the following equation can be 
satisfied for a nonzero gap, A: 

i = £ 
k 

V tanh&SE* 

2Ek 

(2.8) 

3 See for example N. F. Mott and H. Jones, The Theory of the 
Properties of Metals and Alloys (Clarendon Press, Oxford, 1936). 

4 J. Bardeen, Encyclopedia of Physics, edited by S. Flugge 
(Springer-Verlag, Berlin, 1956), Vol. 15, p. 352. 
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where E&=[(€/c-~^)2+A2]1/2 and the sum is limited by 
\ 6k—IJL\ <ho). V is the average over the region of Q 
where (F(Q))av is attractive. The critical temperature 
is given by 

kTc= 1.14fco exp[ - 1/^(0)7] , (2.9) 

where N(G) is the density of states of one spin at the 
Fermi surface. 

It is appropriate to dispose of a difficulty here which 
will arise shortly in considering a particular example of 
a molecule. In long-chain conjugated molecules the 
double and single bonds do not resonate freely between 
each position in the chain, but tend to localize so that a 
stationary periodic charge distribution and periodic 
bond length is established. This introduces a periodic 
potential of twice the atomic spacing in the chain which 
in turn produces a gap in the density of states halfway 
up the band. As there is one electron per atom in the 
band, this band is filled up to the new gap. The conju­
gated system is then no longer a metallic conductor but 
a semiconductor or insulator, i.e., the density of states 
at the Fermi surface N(0) would be zero.5 However, it 
is incorrect to interpret Eq. (2.9) as indicating that 
r c = 0 in this case, for Eq. (2.9) is only an approxima­
tion. Instead, one must go back to (2.8) and examine 
this to see whether in this case a solution is possible. 
In the next section we consider this in detail. 

III. SUPERCONDUCTIVITY IN A SEMICONDUCTOR 

Let us consider a somewhat idealized case of a semi­
conductor with a band structure as shown in Fig. 2. 
Before the introduction of the periodic potential which 
generates the gap, the energy of the states would have 
been given by that shown by the dashed line in the 
figure. Let us take the band gap as 5 and for convenience 
we will assume the density of states near the band edge 
is the same in the two bands. If the lower band is 
completely filled and the upper empty, then the Fermi 
level will be halfway between the two bands. We will 
assume that hoo is greater than 5. 

Let N(Q) be the density of states at the Fermi surface 
for the system prior to the introduction of the periodic 
potential and let e be the energy of these states measured 
with respect to the Fermi surface. The semiconductor 
band gap can then be conveniently introduced by 
changing the energy of each state e to e' = [e2+ (5/2)2]1/2. 
We can now use Eq. (2.8) to see if the superconducting 
state can occur at any temperature. At T~0°K a 

5 Where one does not have alternating double and single bonds, 
but a double bond separated from the next by two single bonds, 
the band theory does not appear to work and one finds that the 
chain is an insulator instead of a metal. This empirical fact does 
not appear to have been explained, but seems to be a consequence 
of the same considerations of the metallic and insulating states 
discussed by N. F. Mott [Phil. Mag. 6, 287 (1961)], and W. Kohn 
[Phys. Rev. 133, A171 (1964)]. As this question is not quite 
settled we have limited ourselves to a conjugated chain which is 
known to behave as one would expect from the band theory. 

FIG. 2. Band structure of a conjugated chain semiconductor 
caused by the localization of the double bond. The energy ka is 
the energy of the transitions of the side chains. 

superconducting state is possible if V is negative and 

K £ 
2[V+(fi/2)*]'/2 

where the sum is limited by | e\ <hu. 
Transforming to an integral, we require 

1 r de 
< 

CU) 

N(Q)\V\ [_e2+{b/2)2J'2'' 
(3.2) 

where x2= (hoy)2— (5/2)2 and N(0) is defined above prior 
to the introduction of the gap. 

1 

N(0)\V\ 
-<ln|~ 

Z(h(*)*--(d/2)iJi*+hu 

5/2 '} (3.3) 

If (5/2)2<^(hoS)2 then the criterion for obtaining the 
superconducting state is that 

8<4ho) exp 
•N(0)\V\J 

(3.4) 

If this criterion can be satisfied, then the transition 
temperature can be obtained from the expression 

N(0)\V\ 

x tanhjj3c€
/ 

-de. (3.5) 

which is the same expression for determining the tem­
perature at which the energy gap of a superconductor 
becomes equal to 5/2. The form of this expression is 
given graphically in the BCS paper. We only need note 
that Tc rapidly approaches the transition temperature 
for 5 = 0 as | V\N(0) is increased beyond that necessary 
to satisfy the criterion. So that if the criterion can be 
satisfied, then the transition temperature generally will 
be of the same order as the transition temperature of 
the metallic superconductor. We see then that a gap 
in the band structure does not necessarily exclude the 
superconducting state. Incidentally, this conclusion does 
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not violate Yang's6 statement that superconductivity 
or ofl-diagonal-long-range order (ODLRO) cannot occur 
in an insulator because his definition of an insulator is 
one in which there are no available empty states. Our 
point is that these states are, in fact, available in our 
model. 

I t is perhaps appropriate to note that a gap in the 
density of states such as that considered above would 
make the average side-chain induced interaction more 
strongly attractive because for interband transitions 
(ek+Q— tk) would be at least 8 and as can be seen from 
(2.6), the attractive term would thus become larger 
provided that 8<ho). If one takes the variation of 
(V(Q))av with Q into account, the details of the above 
inequality are, of course, changed, but the general 
feature that the existence of superconductivity is 
determined by some such criterion remains. 

IV. PARTICULAR EXAMPLE 

As a particular example of a molecule of the type 
considered in Sec. I I , we will consider in detail the 
molecule illustrated in Fig. 3. The spine is a conjugated 
chain of alternating double and single bonds. To this is 
attached a series of side-chain molecules as shown. 
Because of the great thickness of the benzene rings in 
the side chains, compared to the carbon-carbon spacing 
in the spine, it is not possible to attach a side chain to 
every carbon atom on the spine.^This can be seen more 
clearly in Fig. 4 where the molecule is drawn to scale 
using the known values for the van der Waals radii of 
the constituent atoms. The changed periodicity of the 
new structure necessitates a slight modification of the 
wave function used in (2.1) and (2.2) above, but the 
modification is an obvious one which we will handle 
later. The side-chain molecule is part of a well-known 
dye molecule used for sensitizing photographic plates 
in the red, a diethyl-cyanine iodide, and it has been 

FIG. 3. Chemical struc­
ture of the proposed 
superconducting organic 
polymer. At each point R 
on the spine a similar side 
chain to the one shown is 
attached. These side 
chains are resonating hy­
brids of the two extreme 
structures shown in the 
inset. The positive charge 
resonates between the two 
nitrogen sites as illus­
trated. 
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FIG. 4. Approximate scale draw­
ing of the proposed superconduct­
ing organic polymer. The plane of 
the benzene rings in the side chains 
are oriented at right angles to the 
spine. The two nitrogen sites on 
each side chain are indicated, but 
the iodine site has been omitted 
for the sake of clarity. 
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chosen because its absorption spectrum is known, and 
its ground and excited states are well understood.7 

Before estimating the matrix elements of the inter­
action of the side chains with the electrons in the spine, 
it is useful to consider first what effect screening will 
have upon the Coulomb interaction. 

Screening 

The Coulomb potential at a distance r from a charge 
which is placed in a conducting medium is screened by 
the rearrangement of the charges of the medium. The 
potential is then given approximately by (e/r)e~JKr. The 
screening length 1/X in a free-electron gas can be 
estimated by using the Thomas-Fermi method as 
shown by Mott and Jones.4 From this one finds that 
X2= (4me2/h2)(3No//7r)1/s where N0 is the number of 
electrons per unit volume. For the carbon atoms on the 
spine, one valence electron per atom is relatively free, 
and from the known size of the atom one can estimate 
No and thus X. We find that 1/X is approximately 0.5 A. 
This value varies extremely slowly with the number of 
valence electrons so that our choice of one free valence 
electron is not critical. We note then that the Coulomb 
interaction is screened out in an extremely short 
distance. 

I t should be noted too that screening can occur only 
where the charges of the medium are free to move, as for 
example, within an atom or along the conjugated series 
of atoms of the spine. Where the charges are not free 
to move indefinitely, then only a limited displacement 
of the charges occurs which merely modifies the 
Coulomb interaction by the dielectric constant of the 
medium, but does not screen it. These two cases must 
be born in mind in considering the Coulomb interaction 
and the side-chain interaction. Because the electrons 
are free to move in the spine one must use the screened 
Coulomb interaction for computing the Coulomb 
repulsion between the electrons in the spine. However, 

> C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
7 K. Mees, The Theory of the Photographic Process (The 

Macmillan Company, New York, 1942), p. 987. 
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the interaction between the electrons in the spine and 
the charges on the side chain is only partially screened 
because the side chain is insulated from the spine and 
a free movement of charge between the two cannot 
occur, i.e., the conjugation of the side chain does not 
extend to the spine. Here one must use the Coulomb 
interaction modified by the dielectric constant of the 
medium together with some screening due to the in­
duced movement of charge in the spine. 

Coulomb Repulsion 
For steric reasons, it is not possible to attach a side 

chain to each carbon atom of the spine. Consequently, 
the Hamiltonian of the spine is not invariant under a 
displacement from one atom to the next as assumed in 
our earlier discussion. In our example, the unit cell is 
repeated only after four carbon atoms and thus, we are 
dealing here with a lattice with a basis of four atoms. 
The wave function of the spine is then 

**«= E eihRi E akiUm(r-riti). (4.1) 
(G)1' j~i 

Rt is now the position of the lattice point measured 
along the zig-zag line joining the carbon atoms and r/,t-
the position of the jth atom in the unit cell measured 
with respect to R{. akj is a phase factor which one would 
expect would be very nearly (l/41/2)e*fc(r'»*'), which is 
the value it would have if the Hamiltonian was per­
fectly invariant under a C —C displacement. The 
number of unit cells, G is now a quarter of the number 
of carbon atoms in the spine. 

Let us now calculate the Coulomb repulsion between 
electrons in states given by (4.1): 

F(<2)couiomb= / J <t>k-Q*(r1)4>k>+Q*(r2)V(ri2) 

X**'(f2)0*(fi)rfBfid8f2. (4.2) 

Using (4.1) and the fact that the Coulomb interaction 
is screened from all except immediate neighboring ions, 
we obtain in the long-wave limit, i.e., Q~0 

F ( 0 ) Coulomb = -if' U(fi-rj) \2V(rl2) | U(r2-rj) \2dhl2 

+ E f | ^ (n - r y ) | 2 F( f 1 2 ) | f / ( f , - ^ ) |Wr 1 2 l . (4.3) 
k=j±lj J 

The second term should be much smaller than the 
first because V(r) is heavily screened. To a first approxi­
mation we shall ignore it compared to the first, A 
reasonable exact value of the dominant term could be 
obtained by using the known form of the sp carbon 
orbital and evaluating the integral, however, one can 
obtain a reasonable estimate of the approximate magni­
tude of the term by considering the electron density in 
the orbital as constant and occupying a volume of about 

half the volume of the atom. The integral is easily done 
and gives 6e2/\2Rz where R is the van der Waals radius 
of the carbon atom. Using the value obtained above 
for X and a van der Waals radius of 1.5 A8 we obtain a 
value of 6 eV for the integral. This seems to be a reason­
able estimate for one might expect it to be comparable 
to the energy necessary to add one additional electron 
to a carbon atom. The energy necessary to fonn the C~ 
ion is known as the electron affinity A and is related 
to the ionization energy / and the electronegativity x 
of the atom by the relation8 (I+A)/5A=x where I and 
A are expressed in electron volts. The ionization energy 
of carbon is 11.3 eV and x is 2.5 giving an electron 
affinity for carbon of 2.2 eV. This is of the same order 
of magnitude estimated above. Taking the larger value 
of 6 eV to be safe we find 

nO)couiomb«1.5eV/G. (4.4) 

For larger values of Q the first term in (4.3) remains 
unchanged in the tight-binding approximation while 
the second term which we have neglected above is 
reduced by an additional factor of cosQa where a is the 
carbon-carbon spacing. Over the whole range of Q, then 
we can take the Coulomb repulsion to be of the order 
of that given by (4.4) 

Side-Chain Interaction 

The wave function of the side chain must be modified 
in the same way as the wave function for the electrons 
of the spine. It is now 

**» = — E «<«*<£/Wn( r - f / , i y -^ (4-5) 

At the sites, j , where side chains are attached /? is 
approximately eiq^'i/21}2

i and zero where there are no 
side chains. 

The side chain we have chosen is a resonating hybrid 
of the two extreme structures shown in the inset to 
Fig. 3. If the wave functions of these two extreme 
structures are \p+ and \j/~, respectively, then the ground 
state, t̂ o is (l/V2)(^++^_) and the excited state of 
interest to us, ^i is the orthogonal hybrid structure 
(1/V5)(^+—$-). In the matrix element (2.4) we require 
^ityo which is simply | [ | \p+ \ 2~ \ \p- | 2 ] . 

Using the new wave functions for the spine (4.1) 
and (4.5), Eq. (2.4) reduces to 

F(Q)side chains = / / E E «*+Q./«*i| Um(r— fji) \ 2 

J J /=4 „==_! 

Z = l 

X{|^+(f i . i f , ) l ,- |M»'i.*f.) l ,>, (4-6) 
8 L. Pauling, The Nature of the Chemical Bond (Cornell Univer­

sity Press, Ithaca, New York, 1960), pp. 257, 95. 
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where we have confined ourselves to a single atomic 
level m. The different k levels then describe the bands 
of the type discussed in Sec. I I I . We recall that j and I 
refer to each of the four atomic sites within the unit 
cell; and n has values 0 and ± 1 which refer to the same 
unit cell, i and the two adjacent cells, respectively. 

In the superconducting state two types of matrix 
elements are important; those which describe scattering 
between states close to the Fermi surface with momen­
tum transfer Q~0 and those for scattering from one 
side of the Fermi surface to the other. The latter 
scattering involves a Q~ir/a because there is one 
electron per atom in the band originating from the 
fourth spz orbital of the carbon atom. We shall estimate 
the side-chain interaction matrix element in the 
neighborhood of these values of the momentum transfer. 

Firstly, the interaction between the spine and the 
iodine ion of the side chain cancels in the matrix element 
(4.6) because the ion is located at the same point in the 
two extreme structures of the hybrid. Secondly, in the 
\p-. structure the positive charge is located on the 
nitrogen site which is remote from the spine, conse­
quently, the interaction with this structure is weak. 
The only important contribution to the matrix element 
then, is that which is due to the positive charge on the 
nitrogen close to the spine in the \p+ structure, and the 
electron on each of the sites r3-. 

In Fig. 5 we show an enlarged drawing of the spine 
and part of the side chains. In view of our earlier 
discussion of screening, it would be consistent to treat 
the interaction between the positive charge on nitrogen 
site N3 (see Fig. 5) and carbon site 1 as virtually un­
screened; the interaction with sites 2 and 3 as half 
screened and sites beyond this as completely screened. 
Our choice is based on the picture that the migration of 
negative charge from the vicinity of C2 and C3 towards 
Ci would partially screen the field produced by the 

TABLE I. Carbon-nitrogen distances and matrix elements. 

Carbon 
site 

1 
2 
3 
4 

Distance to N3 
(A) 

1.5 
2.5 
3.0 

(4.5) 

Matrix element V(Q) 

Q = 0 

0.76 
0.47 
0.47 
0.76 

Total 2.46 

(eV) 
Q=w/a 

0.41 
0.11 
0.11 
0.41 
1.04 

positive charge on N3 so that at C4 the interaction would 
be effectively reduced to zero. We arrive at the figure 
of J for the screening of sites 2 and 3 because half of the 
atomic orbital adjacent to the nitrogen site on these 
sites is practically unscreened, while the opposite side is 
quite strongly screened. There is very little material 
between the nitrogen site and each of these three carbon 
sites, so that it seems reasonable to leave the Coulomb 
interaction with the dielectric constant that of free 
space. In Table I we tabulate the distances between 
the nitrogen site and each carbon site. We include also 
the matrix element for each site, j , in Eq. (4.5) com­
puted for ^ = 0 and Q=7r/a using the approximate form 
of the a's and /3's given after Eq. (4.1) and (4.5) and 
the unmodified Coulomb interaction limited in the 
manner described above. 

I t is reasonable to neglect the interaction with the 
positive charge on the remote nitrogen site on the \p-
structure because the distance to the spine is about 14 A 
and the interaction is further reduced by the dielectric 
constant of the material of the side chain. This dielectric 
constant must be similar to that of benzene which is 
about 2.2. This gives a total matrix element of 0.1 eV 
for Q=0 which we can neglect compared to the total 
computed in Table I considering the approximations 
we have made. 

In order to calculate the side-chain induced electron-
electron interaction, we must know the energy hco for 
the transitions of the side chains. For an isolated side-
chain molecule of 1,1'-diethy 1-4,4'-cyanine iodide the 
absorption maximum for the transition we are consider­
ing occurs at 600 m/z giving a value of 2 eV for ko.7 

In the polymer the side chains will interact with one 
another and change the frequency of oscillation to some 
extent, but as the molecules are quite well separated 
and the charges are quite well screened from one 
another, let us take the frequency to be about 2 eV 
nevertheless. Then the side-chain induced attraction 
V^(2V(Q)2)av/Gho) will be approximately - 3 . 5 eV/G 
where we have taken the mean of the square of the 
interaction for Q==0 and Q=w/a as given in Table I. 
This is greater than the Coulomb repulsion of 1.5 eV/G 
estimated in (4.4) so that the net interaction is an 
attractive one, 

F « - 2 e V / G . (4.7) 

The reason this is so strongly attractive is that we have 
seen to it that the nitrogen sites lie close to the spine so 
that the matrix element (4.6) is large and at the same 
time have chosen a side chain with a fairly low-frequency 
transition so that %o> is small. 

Some idea of the superconducting transition tempera­
ture now can be obtained by estimating the density of 
states for the electrons in the spine, N(0). This can be 
done in the following way. The spine itself is very 
similar to a conjugated polyene chain {CH=CH— } n 

except that the side chains replace certain of the 
hydrogens so that one can crudely estimate the density 
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of states in the spine from a knowledge of it in a polyene 
chain. The benzene ring is essentially a triene 
{CH=CH—} tied back on itself in the form of a loop 
and can be described in terms of a simple band pic­
ture.9,10 The first absorption at 250 nnx is believed to cor­
respond to a transition of a 7r-electron from a m= 1 to 
w = 2 state which is approximately half the total width 
of the band. The total width of the band for benzene is 
thus ~ 10 eV and should be approximately the same for 
the polyene chain. If we assume the e versus k curve is 
parabolic up to the halfway point in the band (up to 
5 eV), then the density of states of one spin at the Fermi 
surface is approximately \G states/eV. This is probably 
a reasonable estimate of the density of states as it 
corresponds to an effective mass for the electrons in the 
spine of 0.7 the electron mass. 

If there was no bond localization in the spine, then 
we could use Eq. (2.9) to estimate the superconducting 
transition temperature using (4.3) and the above 
density of states. One obtains a temperature ^2200°K 
in this case! This extremely high transition temperature 
can be understood when it is realized that in the chosen 
structure it is an electronic oscillation which provides 
the coupling between the electrons rather than the 
oscillation of the nuclei as in a conventional super­
conductor. The simple argument of the isotope effect 
that the transition temperature for a phonon-coupled 
superconductor is proportional to 1/M1/2, where M is 
the isotopic mass of the nuclei indicates that for an 
electron-coupled superconductor the transition tem­
perature should be a factor of (M/m)112 (i.e., ^300) 
times larger. This is, perhaps, too glib an answer for it 
is necessary to choose the over-all structure so as to 
obtain a sufficiently strong coupling matrix element 
(2.6). Our particular model illustrates this in detail. 

If there is considerable bond localization in the spine, 
then our inequality (3.4) shows that the superconduct­
ing state can still occur if the semiconductor gap 8 is 
somewhat less than 0.67 eV. If this is satisfied, the 
transition temperature in this case should still be 
several hundred °K. 

For transition temperatures as high as this the 
coherence energy of the superconducting state becomes 
comparable to the chemical binding energy. This energy 
is approximately 

Wo= -2N(0)(hu)* exp[ -2 /OV(0) | F | ) ] . (4.8) 

In our example, the coherence energy is about 0.1 eV 
per unit cell of the chain. This is not very large, how­
ever, if one synthesized a polymer in which the density 
of states is large but | V | is small so as to obtain the 
same transition temperature, then the coherence energy 
would become quite large. A coherence energy of as 
much as 1 eV per unit cell of the chain appears possible 

9 J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-
Hill Book Company, Inc., New York, 1963), p. 234. 

10 C. R. Noller, Chemistry of Organic Compounds (W. B. 
Saunders Co., Philadelphia, I960), 2nd ed., p. 665. 

in such a polymer. As this energy is comparable to the 
resonance energy of the benzene ring, one should expect 
a considerable stabilization of the polymer on this 
account. I t is interesting to note, too, that the destruc­
tion of superconductivity at one point in the chain 
raises the energy by the coherence energy per unit 
length times the coherence length f o. The coherence 
length f o for these molecules should be about 30 A as it 
is inversely proportional to Tc and f 0 ~10 4 A for 
conventional superconductors. Consequently, it would 
require a large amount of energy to destroy the super­
conductivity locally. 

V. DISCUSSION 

We believe that while the estimates for the various 
matrix elements in the above example are crude, they 
are not unrealistic. This forces upon us the remarkable 
conclusion that superconductivity could and should 
occur in structures such as this even at room tempera­
tures. There are many other possible structures similar 
to the one shown involving a semiconducting chain for 
the spine and a dye-like molecule for the side chain 
which would also be superconducting. I t is unlikely that 
our particular choice described above would be the 
easiest to synthesize or have the optimum super­
conducting properties, but it illustrates the possibility 
in a detailed manner. 

In these molecules we should expect the usual elec­
trical properties of a metallic superconductor, however, 
in order to observe such effects contact would have to 
be made to the ends of the spine. This could be a difficult 
problem to solve, but may be possible by cross-linking 
the spines so as to form a three-dimensional net of the 
filamentary molecules. Because of the large transition 
temperature, one would expect the critical field for the 
destruction of superconductivity to be very high 
compared to that of conventional superconductors. The 
highly divided filamentary structure of a bulk sample 
of the polymer should mask any appreciable Meissner 
effect. Perhaps the most interesting feature of these 
molecules, however, lies in the phase correlation of the 
electron pairs throughout the molecule. This phase 
correlation should impose certain restraints upon the 
ability of the molecule to react chemically with other 
such molecules. The reason is that in order to form a 
covalent bond, the electrons must interfere construc­
tively in the region of positive potential. Consequently, 
the relative phase of the electrons forming the bond are 
important. Such an effect has been discussed briefly by 
Ambegaokar and Baratoff11 in regard to tunneling 
between conventional superconductors in the Josephson 
effect. The superconducting state is unique in that this 
long-range phase correlation, "off-diagonal-long-range-
order" (ODLRO)6 distinguishes it from the normal or 
insulating states. This we have shown can occur even 

11 V. Ambegaokar and A. Baratoff, Phys. Rev. Letters 10. 486 
(1963). 
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in our structure which is essentially a one-dimensional 
chain, which is in striking contrast to a classical one-
dimensional interacting chain such as the Ising chain 
which cannot exhibit long-range order.12 Because of this 
ODLRO, which is a property of the molecule as a whole 
and the above chemical properties which are related to 
it, these molecules will have the property of reacting 
as a single entity which is precisely what London1 was 
seeking to understand in regard to biologically im­
portant macromolecules. 

In regard to the possible biological significance of our 
results, it is appropriate to mention a theorem which 
was established by Wigner13 on the probability of a 
quantum mechanical system reproducing itself. He 
succeeded in showing that under two reasonable 
assumptions, this probability is essentially zero. The 
relevant assumption is that his ' 'collision matrix" S, 
which generates the final state from the initial state, is 
assumed to be a random matrix. This assumption may 
be violated in the superconducting state because of the 
singular nature of the pair distribution associated with 
ODLRO. I t would be useful to reexamine Wigner's 
theorem to see whether a superconducting quantum 
system would be capable of reproducing. The curious 
chemical selectivity mentioned earlier suggests that 
this may be the case. 
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Note added in proof. I t is appropriate to clarify a point 
in regard to the band structure of our chosen model. 
The partial charges on the nitrogen sites of the side 
chains produce a periodically varying potential along 

12 J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943). 
13 E. P. Wigner, in The Logic of Personal Knowledge (Polanyi 

Festgchrift) (Routledge and Kegan Paul, London, 1961), p. 231. 

the spine with a fundamental period of 4a. This pro­
duces a gap at k~7r/4a but no gap at ir/2a where the 
Fermi surface lies. The reason there is no gap at ir/2a is 
that in the tight binding approximation, where one can 
consider an electron as sampling the potential at all 
points within a particular orbital before moving on, the 
effective potential of each orbital may be taken as that 
of the appropriate carbon nucleus. From a calculation 
similar to that of Table I I , one can easily show that 
there is then no Fourier component of period 2a and 
therefore no gap at the Fermi surface. The only effect 
which tends to produce a semiconductor gap (i.e., one 
at the Fermi surface) is the tendency for the double 
bond to localize at alternate sites. This was considered 
in Sec. I l l , where we showed that for a fixed semicon­
ductor gap, the superconducting state should occur if a 
particular inequality could be satisfied. The band gap 
produced by bond alternation, however, is not fixed, 
but depends upon the amplitude of the periodic distor­
tion ; consequently, the actual gap and distortion must 
be determined in a self-consistent manner. In this case 
our earlier arguments do not apply and whether the 
superconducting state or the semiconductor state occurs 
depends upon which has the lower energy. Longuet-
Higgins and Salem [Proc. Roy. Soc. (London) A251,172 
(1959)] have calculated the stabilization energy for a 
polyene with alternation of bond lengths and obtain an 
energy of 0.019 kcal/mole per bond (—0.001 eV/bond) 
for the semiconductor state. We have calculated it for the 
superconducting state [Eq. (4.8)] and obtain (—0.025 
eV/bond) so that, in our model, the superconducting 
state should be favored. 

Finally, our calculation has shown that a phase transi­
tion from the normal to the superconducting state 
should occur even in our one-dimensional system. This 
is unusual [see, for example, L. van Hove, Physica 16, 
137 (1950)] and one may question whether our result 
follows because the BCS theory, upon which it is based, 
is not sufficiently exact. We have some reason for believ­
ing that our conclusions are valid nevertheless, but this 
point requires further investigation. 


